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Abstract

In this paper, we derive statistical selection procedures to partition ¥ normal popu-
lations into “good” or “bad” ones, respectively, using the nonparametric empirical Bayes
approach. The relative regret risk of a selection procedure is used as a measure of its
performance. We establish the asymptotic optimality of the proposed empirical Bayes
selection procedures and investigate the associated rates of convergence. Under a very
mild condition, the proposed empirical Bayes selection procedures are shown to have rates
of convergence of order close to O(k'% where k is the number of populations involved
in the selection problem. With further strong assumptions, the empirical Bayes selection
procedures have rates of convergence of order O(k"%:_:-lu), where 1 < a < 2 and r is an

integer greater than 2.
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1. Introduction

Consider k£ independent normal populations m; = N(6;,0%), ¢+ = 1,...,k, with un-
known means 4, ..., 8k, respectively, and a common variance o?. Let 6y denote a standard
or a control. A population 7; is said to be good if §; > 8, and bad otherwise. In certain
practical situations, one may be interested in the selection of all good populations while
excluding all bad populations. For example, let §; denote the quality level of a newly
developed manufacturing process 7;,¢ = 1,...,k, and 6y be a specified standard level.
Then, one may be interested in finding out all the potential manufacturing processes for
further investigation. The preceding described selection goal can also be viewed as a first
step of a selection problem in which the selection goal is to select the best from among &

populations provided that the best is at least as good as the specified standard level.

In the literature, the problem of comparing normal populations with a control has
been extensively studied by many authors. To mention a few, for example, Dunnett
(1955), Gupta and Sobel (1958) and Tong (1969) have proposed and studied some natural
selection procedures. Lehmann (1961) and Spjgtvoll (1972) have treated the problem using
methods from the theory of testing hypothesis. Randles and Hollander (1971), Miescke
(1981) and Gupta and Miescke (1985) have derived optimal procedures via minimax or

[-minimax approaches.

The purpose of this paper is to derive statistical procedures which partition the &
normal populations into “good” and “bad” ones, respectively, using the empirical Bayes
approach. It is assumed that the parameter 6y is the value of a specified standard level,

and therefore is assumed to be known.

The paper is organized as follows. In Section 2, the statistical model of the selection
problem is introduced and a Bayes selection procedure for the selection problem is also
derived. As seen in the later part of the paper, the Bayes selection procedure depends on
the prior distribution. When the prior distribution is unknown, the Bayes selection proce-
dure cannot be implemented. In such a situation, using the empirical Bayes approach and
by mimicking the behavior of the Bayes selection procedure, we have developed empirical
Bayes selection procedures in Section 3. The relative regret risk of an empirical Bayes

selection procedure is used as a measure of the performance of this empirical Bayes selec-




tion procedure. We establish the asymptotic optimality of the proposed empirical Bayes
selection procedures in Section 4. The rate of convergence of the relative.regret risks is
studied in Section 5. Under a very mild condition, the proposed empirical Bayes selec-
tion procedures have rates of convergence of order close to O(k~!/2). With some further
assumptions, the empirical Bayes selection procedures have rates of convergence of order

O(k=2(r=1)/Br+1]) where 1 < @ < 2 and r > 2 is an integer.

2. The Selection Problem and A Bayes Selection Procedure
Let Xi1,..., Xim be a sample of size m taken from a normal population 7; = N(8;,02),
t =1,...,k. All samples are assumed to be mutually independent. Let X; = -7}7 > 'X,-j
Jj=1
and when m > 2, let W} = Z Z (Xij — Xi)?/[k(m — 1)]. Note that given 6;, X; ~

N(6;, 2
pendent.

*), k(m —1) Wi/o? ~ x (k(m — 1)), and Xi,..., X and Wi are mutually inde-

l,m

Let = {0 = (61,...,6)]| —00 < 6; < 0,i =1,...,k} be the parameter space, and
let A= {a = (ai1,...,ar)la; =0, 1,4 =1,...,k} be the action space. When action g is
taken, it means that population m; is selected as good if a; = 1, and excluded as bad if

a; =0. Foreach§ € Qand a € A, the loss function L(§,a) is defined to be

k
L(8,a) = Z £(0;,ai) (2.1)

and
20, ai) = ai(fo — 0:)I(6 — 6;) + (1 —a;i)(0; — 60)I(0; — 6o), (2.2)

where I(z) = 1(0) if z > 0 (otherwise). Note that in (2.2), the first term is the loss due to
selecting 7; as good when 6; < 6, and the second term is the loss due to wrongly excluding

m; as bad when 8; > 6;.

It is assumed that for each ¢, the parameter §; is a realization of a random vari-
able ©;; and ©,,...,0; are independently distributed with a common but unknown
prior distribution G. Under the preceding assumption, Xi,...,X; and W; are mu-
tually independent, and Xj,..., X} are identically distributed, having a marginal pdf
f(z) = [ f(z]9,0?)dG(8), where f(:1:|9, 0?) denotes the pdf of a normal N(6, %2) distri-

bution.




Let X; = (Xa,...,Xim),t = 1...k and X = (X1,...,X&). Let X be the sample
space of X. A selection procedure § = (61,...,0x) is defined to be a mapping from the
sample space X into the product space [0, 1]*, such that for each i = 1,...,F, 6i(z) is the
probability of selecting population 7; as a good population when X = z is observed. Let
D be the class of all selection procedures. Also let R(G, §) denote the Bayes risk associated
with the selection procedure §. It is assumed that E[|©;]] < oo so that the Bayes risk
R(G,§) is finite. By Fubini’s theorem, a straightforward computation yields that the Bayes
risk R(G, §) can be expressed as:

R(G,§) =Y Ri(G,&) (23)

=1
and

k
Ri(G,5) = [10o - pilals@) [[ f; (zi)de +C (24)
X J=1
where goi(:gi)‘: E[©;|X; = z:] : the posterior mean of ©; given X; = z;; fi(z;): the
marginal joint pdf of X;, and C' = T(O — 00)dG(8). Thus, a Bayes selection procedure-
6 =(éB1,.-.,6Bk), which minimizegothe Bayes risks among all selection procedures in D,

is clearly given by: Foreach:=1,...,kandz € X,

1 if wi(z:) 2 6o,
épi(z) = { (2.5)

0 otherwise.

Algebraic computation yields that

pi(zd) = i+ —fO(2:)/ f(2:) = i), (2.6)

where f(z;).is the marginal pdf of the sample mean X; and f(V)(z;) denotes its corre-
sponding derivative. That is, the posterior mean ¢;(z;) depends on z; only through the
sample mean value z;. From (2.5) and (2.6), the i-th component Bayes selection procedure

6pi depends on z only through z;. Therefore, (2.5) can be expressed as




1 ifpi(z;) > 6
Opi(zi) = {

0 otherwise.

1 if Ti(z:) >0
{ (2.5')

0 otherwise.

where Ti(z;) = %f(l)(xi) + (z; — 60)f(z:). Note that ¢1(-) = ... = ¥(-) and T3(-) =
.. = T(-) since Xi,...,X} are identically distributed.

One can see that the posterior mean ¥;(z;) is a continuous function in z;; also Yi(zy) is
strictly increasing in z; if the prior distribution G is non-degenerate. Let 4; = {z|¢;(z) <

6o} and Ay = {z|pi(z) > 6p}. Define

a* =

supA4; if A; # ¢,
{ (2.7)

—0CQ if A1 = (}5
Note that if Ay # ¢ and 4A; # ¢, then —co < a* < c0; and if 4y = ¢,a* = 0o. In terms of

a*, the Bayes selection procedure §5 can be written as:
1 ifz; >a*
531'(33,') = (2.5”)
0 otherwise.

Finally, the minimum Bayes risk is:

R(G,ép) = Z Ri(G,63:), (2.8)

and

Ri(G,épi) = /[90 — Yi(z:)l6Bi(zi) f(zi)dz; + C. (2.9)

In the following analysis, we consider those prior distributions G such that lim
Tir—0CQ

Yi(z;) < b < lir_ri_l Yi(z;). Hence A; # ¢ and As # ¢. Therefore, —c0 < a* < 0.
Ti—TCO

3. Empirical Bayes Selection Procedures

Since the prior distribution G is unknown, it is not possible to implement the Bayes
selection procedure §g for the selection problem at hand. However, according to the sta-

tistical model described previously, the k£ components share certain similarity. Therefore,
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the empirical Bayes approach is employed to incorporate information from among the k
populations to provide robust selection procedures for each of the k£ component selection

problems.

The proposed empirical Bayes selection procedures mimick the behavior of the Bayes
selection procedure §g. For this, the forms of (2.5') and (2.5") provide important moti-
vation for the construction of the empirical Bayes selection procedures. To construct the

empirical Bayes selection procedures, first, we need to have estimates for f(z) and f)(z).

For an integer r > 2 and for each ¢ = 0,1, let KT be the class of all Borel-measurable

bounded functions vanishing outside the interval (0,1), such that for ky € KJ,

1 ifyj=0,
1 .
/ Yko(ydy=<0 ifj=1,...,r=1, (3.1)
0
By, ifj=mr;
and for k; € KT,
1 ifj=1,
1 .
/ Ye(y)dy=<0 if;j=0,2,...,r—1, (3.2)
0
By, ifj=r.

We may let B3 be a positive value such that |ki(y)] < Bz forally € (0,1) and
1 =0,1. Also, let h = h(k) be a decreasing function of k such that h(k) — 0 as k — oo.

Define

fzk(X)— %— 1) E kO(X' )

{ (3.3)
k . — .

X = e J; kl(z{“rﬁ)
ji

Note that for each fixed X; = z;, fir(z:) and ff,:)(x,) are consistent estimators of

f(z:) and fM(z;), respectively; see Singh (1977, 1979).
When the variance o? is known, for each i = 1,...,k, let
TH(X:) = (Xi - oo>f,k(x )+ = 1%,
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Also, let {C}} be a sequence of positive numbers such that C§ is increasing in &k and
Cy — 00 as k — oo. We consider an empirical Bayes selection procedures §* = (67,...,65)
defined as follows,
0 if either (X; < —C%)
or (|X;| £ Cf and T}, (X;) < 0),
67 (X) = 6:(Xi, X (2)) = (3.4)
1 if either (X; > C})
or (%] < CF and T(X:) 2 0),

where X(2) = (X1,...,Xi-1, Xi+1,.- -, X&)

2 is unknown, we estimate o2 by Wi. For eachi = 1,...,k, let

Wi

m

When the variance o

Tin(X:) = (Xi — b0) fir (Xi) + —= F) (%)

We then consider an empirical Bayes selection procedure <:5 = (31 ooy b k) defined as follows,

(0 if either (X; < —C%)

) ) or (|Xi| £ C and T,'k(Xi) < 0),
1 if either (X; > Cf)

\ or (IX;[ S C; and Tik(Xi) Z 0).

The Bayes risk of the empirical Bayes selection procedure §* is:

k
R(G,§*) =) Ri(G,8) (3.6)
=1

and
Ri(G,87) =E; [ [ B0 — 4(a0)63 (21, X(0)) (@1 )dai] + O
(3.7)
= [0 = (@B 6701, XD (ai)ds +C,
where the expectation E is taken with respect to the probability measure generated by

- X(i).

The Bayes risk of the empirical Bayes selection procedure (5 is:
S .
R(G,8) = > Ri(G,é) (3.8)
i=1
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and

R{(G,b;) = / 18 — i(z) | E:8i(i, X (3), Wi fz:)da: + C. (3.9)

where the expectation Ej; is taken with respect to the probability measure generated by

(X(2), Wa).

Since ¢ is the Bayes selection procedure, for any selection procedure § = (61, ..., )

Ri(G,6:) — Ri(G,6B:) 20,1 =1,...,k and R(G,§) — R(G,§5) > 0. Define

7

p(G,9) = [R(G,$) - R(G,§B)]/R(G, §B)- (3.9)

p(G,§) is called as the relative regret risk of the selection procedure § compared with
the Bayes selection procedure §g. The relative regret risk p(G, §) is used to measure the

performance of the selection procedure §.

Definition 3.1. (a) A selection procedure § is said to be asymptotically optimal if
p(G,8) — 0 as k — oo.

(b) A selection procedure § is said to be asymptotically optimal of order {a}} if p(G, §) =
O(ax) where {ai} is a sequence of decreasing positive numbers such that ax — 0 as

k — oo.

The asymptotic optimality of the empirical Bayes selection procedures §* and <:5 will

be investigated in the next two sections.

4. Asymptotic Optimality of the Empirical Bayes Selection Procedures

Under the preceding described statistical model and the loss function, one can see
that for the Bayes selection procedure 6, R1(G,0p1) = ... = Ri(G,épr) and R(G,éB)
=k Ry1(G,bB1).

Also, by the symmetric properties of the empirical Bayes selection procedures §* and
¢:5, we have R;(G,67) = ... = Ri(G,6;) and R(G,8*) = k Ry(G,6}), Ri(G, 51) = ...=
Ri(G,8x) and R(G, ) = k Ry(G, by).

Therefore, p(G,6*) = [R1(G,8}) — R1(G,651)]/R1(G,681) and p(G,8) = [Ri(G, b1)
—Ri(G,6B1)]/R1(G,6B1). Since Ry(G,8p1) is a fixed positive value, to study the asymp-

totic optimality of the empirical Bayes selection procedures, it suffices to investigate the
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asymptotic behavior of R;(G,87) — R1(G,6p1) and Ry(G,6,) —R1(G,8p1) for sufficiently
large k.

Theorem 4.1 For the statistical model previously described in Section 2, assume that
E[|0;]] < co and a¢* is a finite number. Then, the empirical Bayes selection procedures
§* and § are asymptotically optimal in the sense that p(G,8*) — 0 and p(G,8) — 0 as

k — oo.

Proof: It is assumed that k is sufficiently large so that a* € (—CY,Cy), where {C}} is a

sequence of increasing positive numbers such that klim Cf ='c0 as described in Section
hand® ]

3. By the finiteness of a* and from (2.5"), (2.9), (3.4) and (3.7),
Ri(G,67) — R1(G, 6B1)

= / 180 — (221 B3 {63(21, X (1)) = 851 (21)} f(21)das

at

= / [60 — 91 (21)]P{8} (21, X (1)) = 1,6B1(z1) = 0} f(z1)des (4.1)
-C:
Cx
+ [ Wa(en) = 801P(55(e1, (1) = 0,8m1(e1) = 1}(a1)da.

Also, from (2.5"), (2.9), (3.5) and (3.9),
Rl(Ga 81) - RI(G7 631)

»

a

= / [90 - (xl)]P{51($17X(1)7 Wk) =1, 531(371) = O}f(xl)d:Bl
-, (4.2)
c;
+ /Wl(ivl) - 90]P{51($1,-¥(1)7Wk) =0, 531(31) = 1}f(371)d931-

a‘

From a corollary of Robbins (1964), to prove the asymptotic optimality of §* and <:5 ,

it suffices to show that for each z;, and e =0, 1,
P{6](z1,X(1)) = & 6p1(z1) =1—¢} =0

9




and P{gl(xl,.{((l),Wk)ze, 631(:131):1-6}—-+0

as k — co. Note that for each fixed 1, fik(z1) and fl(llc) (z1) are consistent estimates of

f(z1) and F (z1), respectively. Also, Wy is a consistent estimator of 2. Hence, Ty,

IS a consistent estimator of Ti(z1) for the o2 known case, and T1x(z1) is a con

estimator of 7T} (z1) for the o2 unknown case. Therefore,

Ploi(ey, X(1) = 1,61 (zy) = 0}

sistent

=P{T7i(z1) > 0, Ti(z) < 0} = 0as bk — o0, and
P{81(21,X(1)) = 0,6p1(21) = 1)

=P{T1*k($1) < 0, Tl(xl) > 0} —0as k — 0.
Similarly,

P{8y(z1, X (1), Wi)=¢ 6p1(21) =1—€} = 0 as k 0.

Hence the proof of the theorem is complete.

5. Rates of Convergence

The following theorem gives the main results of the paper concerning rates of conver-

gence of the empirical Bayes selection procedures.

Theorem 5.1 For the statistical model described

in Section 2, assume that Ell61]] <
and a* is a finite number.

(a) If we take A = ci(k — 1)=1/@r+1) 54 Ct = c2h™! for some fixed positive values ¢,

and ez, then, p(G,§%) = O(k™53%) and (G, ) = O(k~%3%),

(b) Furthermore, suppose that for some 1 < o < 2, and for some A > 0,

(A1)

,$1,0Ma/2(1‘1,h) lwll"‘N“(xl,h)
100 dz; < 0o and (A2) / Ty dz; < oo

where M(z, k) and N(z1,h) are defined in Lemma 6.3. If we take
b= (k= 1)1/ hen o e - O(k~5) and (G, §) = Ok,
Proof: We provide proof of the theorem for the empirical Bayes

selection procedure 0*
only. The proof for the empirical Bayes selection procedure <:5 is analogous to that of 9*

and hence is omitted here, Also, assume that £ is large enough so that g* € (=Ct,Cp).
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From (4.1) and Lemma 6.1 - 6.3, by noting that [1(z1) — 6] f(z1) = Ti(z1), we have,

R.(G,67) — Ri(G,éB1)

c;
< [ BT - B/ M) e
_C;
( i
bl a) a/2 a—1
- [(k _ 1)]7,3}0‘/2 / [M(:I"17h)] / |T1(CII1)| dz
~-Cz :
c;
+ by(a)p(rV / N%(z1,b) / |Ti(z1)|* Y day
._C;
b2(a) i a praf2 a—1
-'|- _[(k_—]_)m / |.’l)1-—9()l ]VI (271,h)/|T1(£L‘1)| diL'l
-Cz
c;
+ ba(a)her / 1 — 60N (1, k) / |Ti(1)|*dzy.
-Cr
(5.1)
Since f(z1) = [ Y= o —(TrdG(B) < \/‘/—_ = By for all zy,
1
0 < M(z1,h) = / f(z1 —vh)dv < By (5.2)
0

for all z; and h. Also,

3’f(t / _mEi—hw-0)? [ . .
T aj(z1 — hw — 6) |dG(9)
rra t = z,~hw 210 J.___ZO ’
where a;,7 = 0,...,r, are finite numbers. Therefore, | [B;f t(,t) ] | < Bj for some
t = z1—hw

positive number Bs for all z;, w and A and hence, for all z; and A
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For a = 1, substituting the inequalities of (5.2) and (5.3) into (5.1) we obtain,

Ri(G,67) — R1(G,6B1)

< 26, (1)B? Cf [ [(k = 1)R32 +2b,(1)Bs C A7

c;
+ by(1)BM? / l1 — Bolday / [(k — )R]/
-c:

o
+ by(1)Bs h" / 21 — Boldz
-

(5.4)
2b,(1)BL/? C¥ [ [(k = 1)R3]Y/2 +2b,(1)Bs CF A2

IN

0*2
+ (B {260l0;+ S} (- DA

’ 0*2

= O(C} | [(k = DR + O(Cr A1)

+ O(CE | [(k = DA + 0(CE m7).

Thus, if we let & = c;(k — 1)}/ (m+1) and C; = c2h™! where ¢; and ¢ are positive

constants, then, from (5.4), R1(G, §)— Ri1(G,8p1) = O(k"sz:-l%)_
This completes the proof of part (a).

Foreach k, let I§ = [—C}, a* —co)U(a* +co, C]. Since Ty (z1) = [¢1(z1)—6o]f(z1), by
Lemma 6.4, for 1 € I,|Ti(z1)| > |z, —a*|f(z1)bs, and for ¢, € If, [Ti(z1)] > f(z1)bs.
Combining these inequalities with (5.1) together, we obtain
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Ri(G,67) — Ri(G,6B1)

< bl(CK)El + bl(a)Ez + bl(a)ho‘("“l)Eg
S BTk - DR T (k- DRy b5
5.5
4 bl(a{)ha(r—l)E4 bg(a)E5 bz(Ol)Ee ( )
bg ™! ((k = 1)h)a/2 b3~ ((k ~1)h)a/2 bg~1
b heTE b he"E
+ 2(012”_1 T4 Z(O‘l—l 8
b3 by
where
Ma/z(l'l h)
E, = : dz,,
' /I lz1 — a*|f(z1)]e=1 "
Ma/2(£l?1,h)
E, = —————=dz,,
: e fei (=) o
N"(ml,h)
FE; = dzy,
’ /f [lo1 — e*[fl@)]eT
Na(it]_,h)
E,; = ———dz,,
! re fei(z) :1:1
I(II] - GOI" Ma/z(.’l,‘]_,h)
E = d )
’ /I ller = a*[f@)pet
_ @ af2
Es =/ |z1 — 6o _flw (xl’h)dml,
Ig femt(z1)
|21 — 60| N%(z1,h)
Fr = dzy,
! /z o1 — a*[flz))>=1
and

!:E]_ - 60|“ Na(l‘]_, h)
Ey = d
: /f iy

c
k

Since I is a bounded interval a,nd: 0< M(z1,h) < By, 0 < N(z3,h) < Bs for all
z1 and h, one can see that for 1 < a < 2,0 < E; < c0,i = 1,3,5,7. Also, under the
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assumptions (Al) and (A2), 0 < E; < 00,7 = 2,4,6,8. Therefore,

Ri(G,6}) — Ri(G,651) = O(((k — 1)h®)~%/2) 4 O(R*("—1)),

r—-1

If we take b = (k — 1) 7T, then Ry(G,6%) — Ri(G, 6p1) = O(k™5F1),

Hence, this completes the proof of part (b). : O

Remarks

(a) In Theorem 5.1(a), we have demonstrated that under the very mild conditions that
E[}©1]] < 0o and a* is finite, the relative regret risk converges to zero with a rate of
order O( k_;r;fl) where r > 2 is a positive integer, involving in the choice of the kernels
ko and ki, see (3.1) and (3.2). According to (3.1) and (3.2), there is no restriction
about the choice of the value r. Therefore, we may choose r as large as possible, so

that the rate of convergence of the relative regret risk may have an order close to

O(k~1/2).

(b) Though under the assumptions Al and A2, the empirical Bayes selection procedure
o* rﬁay have a better convergence rate, it is possible that the assumptions A1 and/or
A2 may not hold for any 1 < & < 2 and any 0 < A < 1. For example, consider a prior
distribution with density g(8) where

T if]e] <1,
9(0) =
o i |6 > 1.

Then, one can see that f(z) is symmetric about the point 0 and f(z) is decreasing
in z for x > 0. Hence, for z > vh > 0, M(z,h) = fol f(z —vh)dz > f(z). Also, as
z > 2, f(z) > 5 for some ¢ > 0. Therefore,

/oo lxla Maﬂ(x)d >/-oo e Ma/2($’h)d$
2

o Fl(m) TF fo1(z)

> / % fl-a/Q(l‘)d.’L‘
2
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vV

oo 1—a/2
/ z“ (—2—) dz
2 T

)
— cl—a/Z / 2292 1o
2

= cosince l < a < 2.

Therefore A1 does not hold in this case.

(c) We provide an example in which both the assumptions Al and A2 hold for any 1 <
a<2.

Assume that ©; ~ N(0,72). Then, marginally X; ~ N(0,q) where ¢ = 22 L 22 We

m

need to verify that

|z|* M/%(z, ) |z|* N*(z, h)
dr < o and | ——————>dz < 0.
/ fe(z) fei(z)
12 .
Since f(z) = 217rq e 2,
1 22 1 if z <0,
M(xyh) =/ eZUha:z—qv h dv S {
f@) v=0 't ifz>0.
Hence,
o af2 0 o0 -
/ Mdm §/ |:v|°‘f1‘°'/2(x)d:1:+/ z® frool? (x)ebq_ dz < co.
fa (m) —0o0 0
Also,
0" (1) 1 _(e=hw? [ . ]
=—=c¢ e aj(z — hw)’
0t |imr—huw V2mq FZO il )
for some real values a;,j =0,1,...,r. Then,
6;f(t)
" 2,2 r
t=zr—hw 2hwz—h w” .
=e = a-(s:—hw)’].
5 e
Hence, -
N(z,h) hAlel . :
—~<e ¢ su a;l |z — hwl’.
f(:l:) — OSwI;l ; I ]l I l
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Therefore,

2] N*(z, ) [ it
————dz < su z|® f(2)la;| |z — hwl? dz < oo.
fe=1(z) ; 0<wp lz|® f(z)la;]| | e

That is, both the assumptions Al and A2 hold.
6. Useful Lemmas

The following lemmas are useful for presenting a concise proof of Theorem 5.1.

Lemma 6.1 (a) For z; < a* and a > 0,
P{6i(21, X (1)) = 1} < E(IT3(21) = Tu(21)[*] / [Ta(z1)].
(b) For 1 > a* and o > 0.

P{§1(21,X(1)) = 0} < E(|Ty(21) ~ T1(21)|°] / [Ta(z1)].

Proof: For z; < a*, Ti(z) = %f(l)(xl) + (21 — 60)f(2z1) < 0. Then by the definition of

the empirical Bayes selection procedure ¢0* and by Markov inequality,

P{61(z1,X(1)) = 1} =P{T};(21) > 0}
=P{T{i(z1) — Tu(z1) > —Ti(z1)}

<E[|Tik(z1) = Ta(21)|%] / |Ta(=1)°.
Part (b) can also be obtained in a similar way. O

Lemma 6.2 For 0 < o < 2, for each fixed xy,

El|T{(z1) — Ty(21)]°]
< C§<02) {Var a/z(fl(zlc)(w ) +EfR (21) = fD (1)}

+ Cller — 60|*{ Var®/?(fie(21)) + |E fir(z1) = f(z1)[°},
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where
1 fo<a<l,

2071 ifl<a<2
Proof: By the definitions of Tl’}‘k(ml) and T(z;) and by C-inequality,

ETTx(z1) - Ta(z1)I°]

E[| [%‘j‘ @) + (21 - 90)f1k($1)] - [%Qf(l)(wl) + (1 —90)f($1)] la]

(6.1)
o?\* (1) (1) a '
< Co(Z) Bl @) - 1]
+ Cal|z1 —60|* E{|fir(z1) — f(=1)|].
Again, by Cr-inequality, for 0 < o < 2,
E[f{ (z1) = FO@0))°]
= E(lf{y (=1) - Ef (=) + B (21) = fD(@)]%]
, (6.2)
< CoElf(21) — EFR @) + Cal BEY (21) = fD(z1)]
< Co Var*(£{2(21)) + Cal EAY (1) = fD(21)]",
and
E| fie(z1) — f(21)1°]
< CaE“flk(ml) - Eflk($1)|a] + Ca|Ef1k($1) - f($1)|a (6-3)
< Co Var*?(fir(21)) + Cal Efir(z1) — flzq)]®.
Substituting (6.2) and (6.3) into (6.1) yields the result of the lemma. O

Lemma 6.3 For each fixed z;,
(a) Var (fix(e1)) < Bf M(z1,h) / [(k~1)h],
(b) Var (£} (z1)) < B2 M(e1,h) / [(k - 1)A%),
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() |Efik(z1) — f(z1)| < Bs A" N(z1,h),
(d) [EfP(z1) = fD(21)] < Bsh™ N(zy, ),
(e) El|Ty(z1) — Ti(z1)|%]
< bi(e){[M(z1, k) [ ((k = 1)R®)]*/? + [A"" N (21, B)]?}

+ ba(e)lar = 60| {[M(1,h) / (k= DAY/ + [A7 N(21,R)]*},

where b,(a) = C% BY % , ba(a) = C2 Bg, M(z1,h) = jg f(z1—vh)dv, and N(zy,h) =
[a (1)

sup
0<w<1

t—:z:l—hw

1
(k- 1)

Var(ko (2 ;Xz))

Proof: (a) Var (fix(z;)) =

1
(k= 1)h?

X,

n_f)

IA

E kg (

- (k—ll)h/(, k2(v) f(z1 — vh)dv

IA

B2 1
.(k—-—-:;l)_h /(; f(.'B]_ - vh)dv

(C) Eflk(xl) = %{- E ko(ml ;'Xz

)= ./c; ko (w)f(z1 — hw)dw.

Part (b) can be obtained in a similar way.
|
|
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Since fol ko(z)dw = 1, hence, by the property of kg,

\Efie(z1) - f(z)] = | / Fo(w)[f(21 — hw) — f(z1)]duwo]

= I/O1 ko(w)[a;];(f)

where 0 < w* < w

|-y

t=z,—~hw*

< Bz A" sup
0<w<1

[3;J;(f)

t=1:1—h'w:|

= B3 hTN(l‘l, h)
The proof of part (d) can be obtained in a way similar to part (c).

Finally, part (e) is obtained by plugging the results of parts (a)-(d) into the inequality

in Lemma 6.2. O

For a positive constant co, define interval I = [a* — ¢, a* + ¢o]. Note that ¥;(z;) =

[ 6 e%'l"?_:;dG(e) /[ em_:;l“%f;dG(G). Hence,

#7dG(0)*)

)

m

02 mézy  mp2 mz,
227 dG(0) [ 7o 22 dG(O)— [ fe T T
[f % dc(e)]”

{J e

(1) i
— o

Yy (z) =

which is continuous in z; and positive for all z; since G is nondegenerate.

Lemma 6.4

(a) Let b3 = inf{¢§1)(w1)|$1 € I}. Then b3 > 0.

(b) For any z1 € I,|¥1(z1) — bp| > |21 — a*|bs.

(¢c) For any z1 ¢ I, |¢1(z1) — 89| > by for some by > 0.

Proof: (a) Since ¢§1)(x1) is continuous in z; on the compact interval I, there exists an
z* € I such that ¢§1)(x*) = bs. Also, note that ¢§1)(x*) can also be viewed as the

variance of some non-degenerate distribution. Hence b3 > 0.
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(b) By the definition of a*,1;(a*) = 6. By mean-value theorem, for z; € I.

[W1(21) = 80| =1 (21) — W1 (a®))|
= |(z1 - a* )}V ()]

> |z1 — a*[bs,
where z] is a point between z; and a*.

(c) Note that 1 (z1)—bp is strictly increasing in z; and ';bl(a*)—éo = 0. So, |¥1(z1)—6| >
min(|1/)1(a* - Co) - 90[, '1,[)1((1* + Co) - 90|) = by > 0 for all z; ¢ I. O
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